Genome-wide DNA methylation perturbations in rice regeneration

<u>Fei-Man Hsu¹</u>, Moloya Gohain², Archana Allishe², Yan-Jiun Huang², Jo-Ling Liao², Lin-Yun Kuang² and Pao-Yang Chen^{2*}

¹ Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA

² Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan

Abstract

Rice cultivars display significant differences in callus regeneration efficiency that can also impact transformation. DNA methylation as an epigenetic factor comprises a cumulative record of cultural environments leading to somaclonal variations and potentially affects regeneration. We generated stage-associated methylomes and transcriptomes of the embryo, induced calli, sub-cultured calli, and regenerated calli (successful and failed regeneration) of IR64 and TNG67. Through extensive bioinformatic analysis integrating methylomes and transcriptomes, we found that stage-associated changes are evident by the increase in the DNA methylation upon induction and decline upon regeneration. These changes in the methylome are largely random, but a few regions are consistently targeted at the later stages of culture. A subset of cultivar-associated differentially methylated regions also showed stage-associated changes, suggesting an association between DNA methylation and the regeneration programs of both rice cultivars. Finally, we identified stress-responsive genes enriched in both stage-associated differentially methylated and expressed genes, and the early onset of trehalose and abscisic acid bioprocesses may contribute to the resilience of TNG67 during regeneration.

Keywords: DNA methylation; *Oryza sativa*; regeneration efficiency; RNA-Seq; somaclonal variation; tissue culture; WGBS