1 *Oryza* genome evolution through a tetraploid lens

- 2
- 3 Fornasiero, Alice^{1*}; Feng, Tao²; Al-Bader, Noor¹; Alsantely, Aseel¹; Mussurova, Saule¹; Hoang,
- 4 Nam V.²; Misra, Gopal¹; Zhou, Yong¹; Fabbian, Leonardo¹; Mohammed, Nahed¹; Rivera Serna,
- 5 Luis¹; Thimma, Manjula¹; Llaca, Victor³; Parakkal, Praveena³; Kudrna, David⁴; Copetti, Dario⁴;
- 6 Rajasekar, Shanmugam⁴; Lee, Seunghee⁴; Talag, Jayson⁴; Sobel-Sorenson, Chandler⁴; Panaud,
- 7 Olivier⁵; McNally, Kenneth L.⁶; Zhang, Jianwei⁷; Zuccolo, Andrea^{1,8*}; Schranz, M. Eric^{2*}; Wing,
- 8 Rod A. $^{1,4,6^*}$. (*)corresponding authors
- 9
- ¹Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah
- 11 University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- ² Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen,
- 13 The Netherlands.
- ³Research and Development, Corteva Agriscience, Johnston, IA, 50131, USA.
- ⁴ Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ
 85721 USA
- 16 <u>8</u>5721, USA.
- ⁵ Laboratoire Génome et Développement des Plantes, UMR 5096 UPVD/CNRS, Université de
- 18 Perpignan Via Domitia, Perpignan, France.
- ⁶ International Rice Research Institute (IRRI), Rice Breeding Innovations Department, Los
- 20 Baños, Laguna, Philippines.
- ⁷ National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory,
- 22 Huazhong Agricultural University, Wuhan, 430070, China.
- ⁸ Institute of Crop Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
- 24
- 25

Abstract

Oryza is remarkable genus - with two domesticated (i.e. Asian and African rice) and 25 diploid and tetraploid wild species, 11 extant genome types, and a ~3.4-fold genome size variation - that possesses a virtually untapped reservoir of genes that can be used for crop improvement. Here we unveil and interrogate 11 new chromosome-level assemblies of nine tetraploid and two diploid wild *Oryza* species in the context of ~15 million years of evolution of the genus. We show that the core *Oryza* (sub)genome across all genome types is only ~200 Mb and largely syntenic, while the remaining nuclear fractions, spanning ~80-600 Mb, are intermingled, extremely plastic and rapidly evolving. For the halophyte *O. coarctata*, we show that - despite the detection of gene fractionation in the subgenomes - homoeologous genes are expressed at higher levels in one subgenome over the other in a mosaic form, thereby showing subgenome equivalence. The integration of these 11 new ultra-high quality reference genomes with our previously published genome data sets provide a nearly complete picture of the consequences of natural and artificial selection across the evolutionary history of *Oryza*. This in turn opens the door to unlock their genetic potential for future crop improvement and neodomestication.